Project Description

Gregory M. Cooper, PhD

Associate Professor of Plastic Surgery
3510 Rangos Research Center, 4401 Penn Avenue
Pittsburgh, PA 15224

Gregory M. Cooper, Ph.D. is faculty of the Departments of Plastic Surgery, Oral Biology, and Bioengineering. After growing up in central Pennsylvania, he received his bachelor’s degrees from the University of Pittsburgh in Anthropology and Biology and his doctorate degree from the Department of Bioengineering at the University of Pittsburgh in 2006. Dr. Cooper has been the Director of the Pediatric Craniofacial Biology Laboratory since 2006. His research focuses on the control of bone formation and healing. There are two cases when this research is applicable: 1) when there is too much bone, as in patients with certain congenital bone malformations, and 2) when there is not enough bone, usually after trauma or surgical complications.

The initial focus of the laboratory fits into the “too much bone” category. Craniosynostosis is defined as the premature fusion of one or more of the cranial sutures, the cracks between the bones of the skull. This means that the body makes bone where it is not supposed to be. When craniosynostosis occurs, it stops the skull from growing in certain directions, leading to secondary deformations of the brain. In order to allow the brain to grow normally, surgery is performed. Although surgical techniques are often able to improve the growth and development of children with craniosynostosis, more work needs to be done to expand our understanding of the biology that underlies craniofacial malformation and to further improve the treatment of these patients.

The laboratory is pursuing the genetic causes of craniosynostosis and the developmental processes that lead to this pathology. Further, it seeks to combine tissue engineering techniques with developmental biology to create tissues that can mimic normal suture function. By understanding the molecular mechanisms used by the body to exert control over bone formation, it intends to control the differentiation of tissues within the surgical site.

The pediatric craniofacial surgeon encounters many scenarios where osseous deficiencies must be restored, in the absence of a readily available supply of bone. Children between 2 and 10 years of age are especially problematic. Autologous bone grafts from distant sites such as the iliac crest or rib offer sources of bone, but such procedures are limited by low tissue yield and significant donor site morbidity (such as infection, pain, hemorrhage, and nerve injury) in up to 8% of patients. Many studies have been conducted to evaluate various bone substitutes such as cadaveric bone grafts, demineralized bone matrix, bioactive glass, hydroxyapatite, and methylmethacrylate. While some of these alternatives are promising, none are as reliable as autogenous bone, and all are fraught with disadvantages ranging from lack of bioactivity (and subsequent incompatibility with the growing pediatric craniofacial skeleton) to weakness and susceptibility to infection.

Recent advances in molecular biology have improved the understanding of craniofacial biology and made possible what some have termed “generative” craniofacial surgery. Instead of using exogenous materials, it is becoming increasingly realistic to repair craniofacial defects by inducing the generation of autogenous bone. Bone morphogenetic protein-2 (BMP2) therapy has been found to induce osteogenesis by chemical signaling. As with any powerful technology, a thorough evaluation of BMP2’s potential efficacy and associated morbidities must be conducted to allow for a properly informed risk / benefit analysis. The laboratory is currently investigating the safety and efficacy of BMP2-based therapies for several different craniofacial applications.